

Calculus Year 13 (NCEA Level 3)

Basic Set Theory and Number Systems of Algebra

Set Theory

A SET is a collection of objects. Any of the individual objects is called an ELEMENT $p \in A$ means that p is an element of set A

A set could be defined as follows: $C = \{x : x \in N, x \le 5\}$ meaning that set C contains all Natural numbers smaller than 5.

Name	Notation	Description	Venn Diagram
NULL SET	Φ	This is an empty set (it contains no elements)	
SUBSET	$A \subset B$	A is a subset of B means that all elements of A are also elements of B	(B) A)
Intersection	$A \cap B$	Intersection of A and B means all elements which belong to both A and B	A
DISJOINT		A and B are called disjoint if $A \cap B = \Phi$	B
Union	$A \cup B$	Union of A and B means all elements which belong to A alone or to B alone or to both A and B.	B

Number systems of Algebra

 $N = \{1, 2, 3, 4, 5, \ldots\}$ **Natural Numbers**

add zero and negatives:

 $I = \{..., -2, -1, 0, 1, 2, ...\}$ $N \subset I$ **Integers**

add fractions:

 $Q = \left\{ \frac{a}{b} : a, b \in I, b \neq 0 \right\}$ $I \subset Q$ **Rational Numbers**

add **Irrationals** algebraic numbers e.g. solutions for x of $\{x^n = a; a \ge 0\}$ transcendental numbers $\{\pi,e,..\}$

Real Numbers R, the set R is **complete** and **dense** on the number line. $Q \subset R$

To enable $x^b = a : a, b \in R$ to always have a solution we define

Complex Numbers (pairs) $C = \{(a,b) : a \in R, b \in R\}$ $R \subset C$

1 ngawhetu.com