Calculus Year 13 (Level 8)

Summary 2

Bionomials, Functions

Factorials

$n!=n(n-1)(n-2) . .2 .1 ; n \in N$ is the number of ways n objects can be arranged.
$0!\equiv 1$
Simplify $\frac{73!}{71!}=\frac{73 \times 72 \times 71!}{71!}=73 \times 72=5256$

Combinations

${ }^{n} C_{r}$ is number of ways r objects can be selected from a total of n objects
${ }^{n} C_{r}=\frac{n!}{r!\times(n-r)!}$ where ${ }^{n} C_{0}=1$ and ${ }^{n} C_{n}=1$

Binomial Theorem

${ }^{n} C_{r}$ are also coefficients in binomial expansions (and arranged in Pascal's triangle)
$(x+y)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} y+{ }^{n} C_{2} x^{n-2} y^{2}+\ldots+{ }^{n} C_{r} x^{n-r} y^{r}+\ldots+{ }^{n} C_{n} y^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{n-r} y^{r}$
Hence the ($\mathrm{r}+1$) st term is $T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r}$

Use this to calculate any term e.g. find term with x^{8} in $\left(x^{2}+\frac{1}{x}\right)^{10}$
${ }^{10} C_{r}\left(x^{2}\right)^{10-r}\left(\frac{1}{x}\right)^{r}={ }^{10} C_{r} x^{20-2 r} x^{-r}={ }^{10} C_{r} x^{20-3 r}$ Hence $20-3 r=8$ and $r=4$
So the term is ${ }^{10} C_{4} x^{8}=210 x^{8}$

Functions

The function $y=f(x)$ maps the set of x onto the set of y.
The set of x is the domain; the set of y is the range of the function

Any value of x can only have one value of y associated with it, otherwise $f(x)$ is not a function
Notiations: $4 x+5 \quad y=4 x+5 \quad f(x)=4 x+5$

$$
f: x \mapsto 4 x+5 \text { (mapping) } \quad\{(x, y): y=4 x+5\} \text { (set builder) }
$$

Inverse Function swap x and y in $y=f(x)$
Ex: $y=f(x)=x+6 \quad f^{-1} \rightarrow x=y+6$ or $y=x-6$ Hence $f^{-1}(x)=x-6$
COMPOSITE FUNCTION $f \circ f^{-1} \equiv x$
Ex: substitute $y=x-6$ for x in $y=x+6$ i.e. $y=(x-6)+6=x$

