Calculus Year 13 (Level 8)

Summary 7

Complex Numbers

Complex Numbers are an extension of Real numbers to be able to always find roots of any polynomial (see handout "Basic Set Theory and Number Systems of Algebra"). It is convenient to imagine that complex numbers represent points (co-ordinates) in the Argand plane, where the horizontal axis is the set \mathbf{R} and the imaginary part is measured along the vertical axis.

$$
i^{2}=-1 \text { or } i=\sqrt{-1}
$$

Rectangular form:

$$
z=x+i y ; x=\operatorname{Re}(z) \text { and } y=\operatorname{Im}(z)\{x, y \in R\}
$$

Polar form

$$
z=r \operatorname{cis}(\theta)=r(\cos \theta+i \sin \theta) r \text { is Modulus, } \theta \text { is Argument }
$$

Conversions:

$$
\begin{array}{ll}
R \rightarrow P: & r=\sqrt{x^{2}+y^{2}} ; \cos \theta=\frac{x}{r} ; \sin \theta=\frac{y}{r} ; \text { and } \\
P \rightarrow R: & x=r \cos \theta ; y=r \sin \theta
\end{array}
$$

Addition and Subtraction: $\left(x_{1}+i y_{1}\right) \pm\left(x_{2}+i y_{2}\right)=\left(x_{1} \pm x_{2}\right)+i\left(y_{1} \pm y_{2}\right)$
Multiplication:

$$
\begin{aligned}
& \left(x_{1}+i y_{1}\right) \bullet\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) \\
& r_{1} \operatorname{cis} \theta_{1} \bullet r_{2} \operatorname{cis} \theta_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Conjugate: $\quad \bar{z}=x-i y$ (where $z=x+i y$) (mirror about R -axis in Argand plane)

$$
\bar{z}=r c i s(-\theta)(\text { where } z=r c i s \theta)
$$

Division:

$$
\begin{aligned}
& \frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}=\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{\left(x_{2}+i y_{2}\right)\left(x_{2}-i y_{2}\right)}=\frac{1}{x_{2}^{2}+y_{2}^{2}}\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right) \\
& \frac{r_{1} c i s \theta_{1}}{r_{2} c i s \theta_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

Modulus:

$$
|z|=r=\sqrt{x^{2}+y^{2}}
$$

Raise to power: $z^{n}=(r c i s \theta)^{n}=r^{n} \operatorname{cis}(n \theta) ; n \in I$ (De Moivre)
Solve quadratic Polynomials: use $i=\sqrt{-1}$ for negative square roots,
Example:

$$
\begin{aligned}
& x^{2}-4 x+5=0 \text { has solutions } \\
& x_{1,2}=\frac{4 \pm \sqrt{(-4)^{2}-4(5)}}{2}=\frac{4 \pm \sqrt{-4}}{2}=\frac{4 \pm 2 \sqrt{-1}}{2}=2 \pm i
\end{aligned}
$$

Conjugate Root Theorem: Complex roots of any polynomial over \mathbf{R} come in conjugate pairs, hence if $P(x)$ is a polynomial over \mathbf{R} and z is a root, then \bar{z} is also a root.

Complex Roots of Polynomials over C: $\quad z^{n}=r c i s \theta$ has n solutions $r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta}{n}+\frac{2 \pi}{n}\right)$ within the interval $-180<\alpha<180$ Example: $\quad z^{4}=(5 \operatorname{cis}(-36.9))^{4}$ has roots $5^{\frac{1}{4}} \operatorname{cis}\left(\frac{-36.9}{4}+\frac{360}{4}\right)$ giving the solutions
1.495 cis(-99.2), 1.495cis(-9.2), 1.495cis(80.8), 1.495cis(170.8) Note that these solutions are symmetric about the origin in the Argand plane.

