Physics Year 13 (NCEA Level 3)

Summary Circular Motion

Frequency and Period

Period T is the time for one revolution (unit s)
Frequency f is the number of revolutions per second (unit s ${ }^{-1}$)
Period and frequency are each other's inverse: $T=\frac{1}{f}$

Centripetal Force and Acceleration

Uniform circular motion needs a constant centripetal acceleration (directed towards the centre) $a_{c}=\frac{v^{2}}{r}$ where v is tangential linear velocity and r is the radius
Therefore the centripetal force (with $F=m a$) is $F_{c}=\frac{m v^{2}}{r}$

$F=G \frac{m M}{r^{2}}=\frac{m v^{2}}{r}$ hence $v^{2}=G \frac{M}{r} ;(M$ is Earth's mass, m is satellite's mass)
(Note that v^{2} is now independent of the satellite's mass).
Period of the satellite: $T=\frac{2 \pi r}{v}$ (circumference divided by speed).
Combine the last two equations and solve for r :
$r=G \frac{M}{v^{2}}=G \frac{M T^{2}}{4 \pi^{2} r^{2}}$ hence $r^{3}=G \frac{M T^{2}}{4 \pi^{2}}$ or $r=\sqrt[3]{G M \frac{T^{2}}{4 \pi^{2}}}$

Use this formula to calculate the radius of a geostationary orbit ($T=24 \mathrm{hr}$).

Slightly re-arranged this formula gives Kepler's third law: $\frac{r^{3}}{T^{2}}=G \frac{M}{4 \pi^{2}}=\mathrm{constant}$
We can also make T the subject:

$$
T^{2}=\frac{r^{3} 4 \pi^{2}}{G M} \text { or } T=2 \pi \sqrt{\frac{r^{3}}{G M}}
$$

