Nag \Unetu ス̃esources

Physics Year 13 (NCEA Level 3)

Rotational Motion and Energy

Summary

Angular form of Equations of Motion

Linear displacement along a circle arc $\boldsymbol{d}(m)$ is compared to Angular displacement $\theta(\mathrm{rad})$. These are related by $d=r \theta$.

(Note that radians are simply defined this way: the circumference is $2 \pi r$ and the angle of a full circle is 2π radians).

Similarly we can compare linear velocity $\boldsymbol{v}\left(\mathrm{ms}^{-1}\right)$ to angular velocity $\omega\left(\mathrm{rads}^{-1}\right)$ with the relationship $v=r \omega$ and
linear acceleration a $\left(\mathrm{ms}^{-2}\right)$ to angular acceleration $\alpha\left(\mathrm{rads}^{-2}\right)$ with the relationship $a=r \alpha$.

The linear equations of motion can now be "translated" into the rotational equations of motion:

$$
\begin{aligned}
\omega_{f} & =\omega_{i}+\alpha t \\
\omega_{f}^{2} & =\omega_{i}^{2}+2 \alpha \theta \\
\theta & =\omega_{i} t+\frac{1}{2} \alpha t^{2}
\end{aligned}
$$

Angular Frequency

For circular motion we defined frequency f as number of revolutions per second (unit s ${ }^{-1}$)
Here we also define Angular frequency ω as number of radians per second (unit rads ${ }^{-1}$)
There are 2π radians in one revolution, therefore $\omega=2 \pi f=\frac{2 \pi}{T}$ where T is the Period (s).

This Angular Frequency is the same as the angular velocity ω above
Compare Linear velocity $v=\frac{2 \pi r}{T}$ with Angular velocity $\omega=\frac{2 \pi}{T}$ (remember $v=r \omega$).

Torque and Rotational Inertia

Torque is "Angular Force" caused by a force couple or by a force F at a distance r from the leverage point: $\tau=F r$ unit is Nm .
Torque is proportional to angular acceleration: $\tau=I \alpha$.
(compare to Newton's second law: $F=m a$)
I is the Rotational Inertia. Unit of I is kgm^{2}.
Mass is a single constant for any object; Rotational Inertia depends on the mass distribution over the object: $I=\sum m r^{2}$

Energy in Rotation

Work is Torque times Angular displacement: $W=\tau \theta$
Rotational Kinetic Energy: $E_{r o t}=\frac{1}{2} I \omega^{2}$
Energy in rolling is sum of linear and rotational energy: $E_{\text {rolling }}=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$

Angular Momentum

compare with $p=m v: \quad L=I \omega\left(\right.$ unit $\left.^{k g m_{2}^{2}} \mathrm{~s}^{-1}\right)$

Angular Momentum is conserved when there is no external torque.

Examples: rotating ice skater, somersault, air masses in atmosphere of rotating earth. If I changes because mass distribution changes, angular velocity must also change to conserve Angular Momentum.

Angular Momentum of a point mass is simply the Linear Momentum times the radius:
$L=m v r$

Remember the (confusing) units for:

Linear Momentum	kgms^{-1}
Angular Momentum	$\mathrm{kgm}^{2} \mathrm{~s}^{-1}$
Rotational Inertia	kgm^{2}

